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Chapter 3: 
Image Enhancement in the 
Spatial Domain

Lecturer: Wanasanan Thongsongkrit
Email : wanasana@eng.cmu.ac.th

Office room : 410
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Principle Objective of 
Enhancement

Process an image so that the result will be 
more suitable than the original image for 
a  specific application.
The suitableness is up to each application.
A method which is quite useful for 
enhancing an image may not necessarily be 
the best approach for enhancing another 
images
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2 domains
Spatial Domain : (image plane)

Techniques are based on direct manipulation of 
pixels in an image

Frequency Domain : 
Techniques are based on modifying the Fourier 
transform of an image

There are some enhancement techniques based 
on various combinations of methods from these 
two categories.

4

Good images
For human visual

The visual evaluation of image quality is a highly 
subjective process.
It is hard to standardize the definition of a good 
image.

For machine perception
The evaluation task is easier.
A good image is one which gives the best machine 
recognition results.

A certain amount of trial and error usually is 
required before a particular image 
enhancement approach is selected.
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Spatial Domain
Procedures that operate 
directly on pixels.

g(x,y) = T[f(x,y)]g(x,y) = T[f(x,y)]
where 

f(x,y) f(x,y) is the input image
g(x,y) g(x,y) is the processed 
image
T T is an operator on f f 
defined over some 
neighborhood of (x,y)(x,y)

6

Mask/Filter
Neighborhood of a point (x,y) 
can be defined by using a 
square/rectangular (common 
used) or circular subimage 
area centered at (x,y)
The center of the subimage 
is moved from pixel to pixel 
starting at the top of the 
corner

•
(x,y)
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Point Processing
Neighborhood = 1x1 pixel
gg depends on only the value of ff at (x,y)(x,y)
TT = gray level (or intensity or mapping) 
transformation function

s = T(r)s = T(r)
Where 

rr = gray level of f(x,y)f(x,y)
ss = gray level of g(x,y)g(x,y)

8

Contrast Stretching
Produce higher 
contrast than the 
original by 

darkening the levels 
below m in the original 
image
Brightening the levels 
above m in the original 
image
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Thresholding 
Produce a two-level 
(binary) image

10

Mask Processing or Filter
Neighborhood is bigger than 1x1 pixel
Use a function of the values of f in a 
predefined neighborhood of (x,y) to determine 
the value of g at (x,y)
The value of the mask coefficients determine 
the nature of the process
Used in techniques

Image Sharpening 
Image Smoothing
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3 basic gray-level 
transformation functions

Linear function
Negative and identity 
transformations

Logarithm function
Log and inverse-log 
transformation

Power-law function
nth power and nth 
root transformations

Input gray level, r
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Identity function
Output intensities 
are identical to input 
intensities.
Is included in the 
graph only for 
completeness.

Input gray level, r
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Image Negatives
An image with gray level in 
the range  [0, L[0, L--1]1]
where L = 2L = 2nn ; n = 1, 2…
Negative transformation :

s = L s = L –– 1 1 ––rr
Reversing the intensity 
levels of an image.
Suitable for enhancing white 
or gray detail embedded in 
dark regions of an image, 
especially when the black 
area dominant in size.Input gray level, r
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Example of Negative Image

Original mammogram 
showing a small lesion of 

a breast

Negative Image : gives a 
better vision to analyze 

the image
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Log Transformations
s = c log (1+r)s = c log (1+r)

c is a constant 
and r ≥ 0
Log curve maps a narrow 
range of low gray-level 
values in the input image 
into a wider range of 
output levels.
Used to expand the 
values of dark pixels in 
an image while 
compressing the higher-
level values.

Input gray level, r
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Log Transformations
It compresses the dynamic range of images 
with large variations in pixel values
Example of image with dynamic range: Fourier 
spectrum image
It can have intensity range from 0 to 106 or 
higher. 
We can’t see the significant degree of detail 
as it will be lost in the display.



Department of Computer Engineering, CMU

9

17

Example of Logarithm Image

Result after apply the log 
transformation with c = 1, 

range = 0 to 6.2

Fourier Spectrum with 
range = 0 to 1.5 x 106

18

Inverse Logarithm 
Transformations

Do opposite to the Log Transformations
Used to expand the values of high pixels 
in an image while compressing the 
darker-level values.
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Power-Law Transformations
s = s = crcrγγ

c and γ are positive 
constants 
Power-law curves with 
fractional values of γ
map a narrow range of 
dark input values into a 
wider range of output 
values, with the opposite 
being true for higher 
values of input levels.
c = γ = 1 Identity 
function

Input gray level, r
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Plots of s = s = crcrγγ for various values of  γ
(c = 1 in all cases)
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Gamma correction
Cathode ray tube (CRT) 
devices have an 
intensity-to-voltage 
response that is a 
power function, with γ
varying from 1.8 to 2.5
The picture will become 
darker.
Gamma correction is 
done by preprocessing 
the image before 
inputting it to the 
monitor with s = crs = cr1/1/γγ

Monitor

Monitor

Gamma
correction

γ = 2.5

γ =1/2.5 = 0.4
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Another example : MRI
(a) a magnetic resonance image of 

an upper thoracic human spine 
with a fracture dislocation and 
spinal cord impingement

The picture is predominately dark
An expansion of gray levels are 
desirable needs γ < 1

(b) result after power-law 
transformation with γ = 0.6, c=1

(c) transformation with γ = 0.4  
(best result)

(d) transformation with γ = 0.3
(under acceptable level)

dc
ba

22

Effect of decreasing gamma
When the γ is reduced too much, the 
image begins to reduce contrast to the 
point where the image started to have 
very slight “wash-out” look, especially in 
the background
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Another example
(a) image has a washed-out 

appearance, it needs a 
compression of gray levels 

needs γ > 1
(b) result after power-law  

transformation with γ = 3.0 
(suitable)

(c) transformation with γ = 4.0
(suitable)

(d) transformation with γ = 5.0
(high contrast, the image 
has areas that are too dark, 
some detail is lost)

dc
ba

24

Piecewise-Linear 
Transformation Functions

Advantage:
The form of piecewise functions can be 
arbitrarily complex

Disadvantage:
Their specification requires considerably 
more user input
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Contrast Stretching
increase the dynamic range of 
the gray levels in the image
(b) a low-contrast image : result 
from poor illumination, lack of 
dynamic range in the imaging 
sensor, or even wrong setting of 
a lens aperture of image 
acquisition
(c) result of contrast 
stretching: (r1,s1) = (rmin,0) and 
(r2,s2) = (rmax,L-1)
(d) result of thresholding

26

Gray-level slicing
Highlighting a specific 
range of gray levels in an 
image

Display a high value of all 
gray levels in the range of 
interest and a low value 
for all other gray levels

(a) transformation highlights 
range [A,B] of gray level and 
reduces all others to a 
constant level
(b) transformation highlights 
range [A,B] but preserves all 
other levels 
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Bit-plane slicing
Highlighting the 
contribution made to total 
image appearance by 
specific bits
Suppose each pixel is 
represented by 8 bits
Higher-order bits contain 
the majority of the visually 
significant data
Useful for analyzing the 
relative importance played 
by each bit of the image

Bit-plane 7
(most significant)

Bit-plane 0
(least significant)

One 8-bit byte

28

Example
The (binary) image for 
bit-plane 7 can be 
obtained by processing 
the input image with a 
thresholding gray-level 
transformation.

Map all levels between 0 
and 127 to 0
Map all levels between 129 
and 255 to 255

An 8-bit fractal image
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8 bit planes

Bit-plane 6

Bit-
plane 0

Bit-
plane 1

Bit-
plane 2

Bit-
plane 3

Bit-
plane 4

Bit-
plane 5

Bit-plane 7
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Histogram Processing
Histogram of a digital image with gray levels in 
the range [0,L-1] is a discrete function

h(rh(rkk) = ) = nnkk
Where 

rk : the kth gray level
nk : the number of pixels in the image having gray 
level rk

h(rk) : histogram of a digital image with gray levels rk
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Normalized Histogram
dividing each of histogram at gray level rrkk by 
the total number of pixels in the image, nn

p(rp(rkk) = ) = nnkk / n/ n
For k = 0,1,…,L-1
p(rp(rkk)) gives an estimate of the probability of 
occurrence of gray level rrkk

The sum of all components of a normalized 
histogram is equal to 1

32

Histogram Processing
Basic for numerous spatial domain 
processing techniques
Used effectively for image enhancement
Information inherent in histograms also 
is useful in image compression and 
segmentation
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Example rk

h(rk) or p(rk)

Dark image

Bright image

Components of 
histogram are 
concentrated on the 
low side of the gray 
scale.

Components of 
histogram are 
concentrated on the 
high side of the gray 
scale.

34

Example
Low-contrast image

High-contrast image

histogram is narrow 
and centered toward 
the middle of the 
gray scale

histogram covers broad 
range of the gray scale 
and the distribution of 
pixels is not too far from 
uniform, with very few 
vertical lines being much 
higher than the others
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Histogram Equalization
As the low-contrast image’s histogram is 
narrow and centered toward the middle of the 
gray scale, if we distribute the histogram to a 
wider range the quality of the image will be 
improved.
We can do it by adjusting the probability 
density function of the original histogram of 
the image so that the probability spread 
equally

36

0 1rk

sk= T(rk)

s

r

T(r)

Histogram transformation
s = T(r)s = T(r)

Where 0 ≤ r ≤ 1
T(r) satisfies

(a). T(r) is single-
valued and 
monotonically 
increasingly in the 
interval 0 ≤ r ≤ 1
(b).  0 ≤ T(r) ≤ 1 for 
0 ≤ r ≤ 1
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2 Conditions of T(r)
Single-valued (one-to-one relationship) 
guarantees that the inverse transformation will 
exist
Monotonicity condition preserves the increasing 
order from black to white in the output image 
thus it won’t cause a negative image
0 ≤ T(r) ≤ 1 for 0 ≤ r ≤ 1 guarantees that the 
output gray levels will be in the same range as 
the input levels.
The inverse transformation from s back to r is 

r = T r = T --11(s)     ; 0 (s)     ; 0 ≤≤ s s ≤≤ 11

38

Probability Density Function
The gray levels in an image may be 
viewed as random variables in the 
interval [0,1]
PDF is one of the fundamental 
descriptors of a random variable
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Random Variables
Random variables often are a source of 
confusion when first encountered.  
This need not be so, as the concept of a 
random variable is in principle quite 
simple.  

40

Random Variables

A random variable, x, is a real-valued function 
defined on the events of the sample space, S.  
In words, for each event in S, there is a real 
number that is the corresponding value of the 
random variable.  
Viewed yet another way, a random variable a random variable 
maps each event in S onto the real linemaps each event in S onto the real line. 
That is it.  A simple, straightforward definition. 
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Random Variables
Part of the confusion often found in 
connection with random variables is the 
fact that they are functionsthey are functions.  
The notation also is partly responsible 
for the problem.  

42

Random Variables
In other words, although typically the 
notation used to denote a random 
variable is as we have shown it here, x, or 
some other appropriate variable, 
to be strictly formal, a random variable 
should be written as a function x(·) 
where the argument is a specific event 
being considered.  
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Random Variables
However, this is seldom done, and, in our 
experience, trying to be formal by using 
function notation complicates the issue 
more than the clarity it introduces.  
Thus, we will opt for the less formal 
notation, with the warning that it must 
be keep clearly in mind that random 
variables are functions.

44

Random Variables
Example:  

Consider the experiment of drawing a single 
card from a standard deck of 52 cards. 
Suppose that we define the following events. 
A: a heart; B: a spade; C: a club; and D: a 
diamond, so that S = {A, B, C, D}.  
A random variable is easily defined by 
letting x = 1 represent event A, x = 2 
represent event B, and so on.  
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Random Variables
As a second illustration, 

consider the experiment of throwing a single die and 
observing the value of the up-face.  
We can define a random variable as the numerical 
outcome of the experiment (i.e., 1 through 6), but 
there are many other possibilities.  
For example, a binary random variable could be 
defined simply by letting x = 0 represent the event 
that the outcome of throw is an even number and 
x = 1 otherwise.

46

Random Variables
Note 

the important fact in the examples just 
given that the probability of the events have 
not changed; 
all a random variable does is map events onto 
the real line.
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Random Variables
Thus far we have been concerned with 
random variables whose values are 
discrete.  
To handle continuous random variables 
we need some additional tools.  
In the discrete case, the probabilities of 
events are numbers between 0 and 1.  

48

Random Variables
When dealing with continuous quantities 
(which are not denumerable) we can no 
longer talk about the "probability of an 
event" because that probability is zero.  
This is not as unfamiliar as it may seem.  
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Random Variables
For example, 

given a continuous function we know that the 
area of the function between two limits a 
and b is the integral from a to b of the 
function.  
However, the area at a point is zero because 
the integral from,say, a to a is zero.  
We are dealing with the same concept in the 
case of continuous random variables. 

50

Thus, instead of talking about the probability 
of a specific value, we talk about the 
probability that the value of the random 
variable lies in a specified range.  
In particular, we are interested in the 
probability that the random variable is less 
than or equal to (or, similarly, greater than or 
equal to) a specified constant a.  
We write this as

F(a) =  P(x F(a) =  P(x ≤≤ a)a)

Random Variables
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Random Variables
If this function is given for all values of a (i.e., 
− ∞ < a < ∞), then the values of random variable 
x have been defined.
Function F is called the cumulative probability 
distribution function or simply the cumulative 
distribution function (cdf).  
The shortened term distribution function also 
is used.

52

Observe that the notation we have used makes 
no distinction between a random variable and 
the values it assumes.  
If confusion is likely to arise, we can use more 
formal notation in which we let capital letters 
denote the random variable and lowercase 
letters denote its values.  
For example, the cdf using this notation is 
written as 

FFXX(x) =  P(X (x) =  P(X ≤≤ x)x)

Random Variables
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Random Variables
When confusion is not likely, the cdf
often is written simply as F(x).  
This notation will be used in the following 
discussion when speaking generally about 
the cdf of a random variable.

54

Random Variables
Due to the fact that it is a probability, 
the cdf has the following properties:

1. F(-∞) =  0
2. F(∞) =  1
3. 0 ≤ F(x) ≤ 1
4. F(x1) ≤ F(x2) if x1 < x2
5. P(x1 < x ≤ x2) = F(x2) – F(x1)
6. F(x+) = F(x),

where x+ = x + ε, with ε being a positive, 
infinitesimally small number.
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The probability density function 
(pdf or shortly called density function) 
of random variable x is defined as the 
derivative of the cdf:

Random Variables

dx
)x(dF)x(p =

56

Random Variables

The pdf satisfies the following properties:
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Random Variables
The preceding concepts are applicable to 
discrete random variables. 
In this case, there is a finite no. of events and 
we talk about probabilities, rather than 
probability density functions. 
Integrals are replaced by summations and, 
sometimes, the random variables are 
subscripted.  
For example, in the case of a discrete variable 
with N possible values we would denote the 
probabilities by P(xi), i=1, 2,…, N.

58

If a random variable x is transformed by a 
monotonic transformation function T(x) to 
produce a new random variable y, 
the probability density function of y can be 
obtained from knowledge of T(x) and the 
probability density function of x, as follows:

where the vertical bars signify the absolute value. 

Random Variables

dy
dx)x(p)y(p xy =
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Random Variables
A function T(x) is monotonically 
increasing if T(x1) < T(x2) for x1 <  x2, and
A function T(x) is monotonically 
decreasing if T(x1) > T(x2) for x1 < x2.
The preceding equation is valid if T(x) is 
an increasing or decreasing monotonic 
function.

60

Applied to Image
Let 

pprr(r)(r) denote the PDF of random variable r
ppss (s)(s) denote  the PDF of random variable s

If pprr(r)(r) and T(r)T(r) are known and TT--11(s)(s)
satisfies condition (a) then ppss(s(s)) can be 
obtained using a formula : 

 
ds
dr(r)  p(s) p rs =
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Applied to Image

The PDF of the transformed variable s 
is determined by 

the gray-level PDF of the input image 

and by 

the chosen transformation function

62

∫==
r

r dw)w(p)r(Ts
0

Transformation function

A transformation function is a cumulative 
distribution function (CDF) of random 
variable r :

where w is a dummy variable of integration

Note:     T(r) depends on pr(r)Note:     T(r) depends on pr(r)
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Cumulative 
Distribution function

CDF is an integral of a probability 
function (always positive) is the area 
under the function
Thus, CDF is always single valued and 
monotonically increasing 
Thus, CDF satisfies the condition (a)
We can use CDF as a transformation 
function

64

Finding ps(s) from given T(r)
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ps(s)
As ps(s) is a probability function, it must 
be zero outside the interval [0,1] in this 
case because its integral over all values 
of s must equal 1.
Called ps(s) as a uniform probability a uniform probability 
density functiondensity function
ps(s) is always a uniform, independent of 
the form of pr(r)

66

∫==
r

r dw)w(p)r(Ts
0

a random variable s 
characterized by 

a uniform probability 
function

yields

0

1

s

Ps(s)
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Discrete 
transformation function

The probability of occurrence of gray 
level in an image is approximated by

The discrete version of transformation

∑

∑

=

=

==

==

k

j

j

k

j
jrkk

, ..., L-,      where k
n
n

)r(p)r(Ts

0

0

110  

110      , ..., L-,  where k 
n
n)r(p k

kr ==
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Histogram Equalization
Thus, an output image is obtained by mapping 
each pixel with level rrkk in the input image into a 
corresponding pixel with level sskk in the output 
image
In discrete space, it cannot be proved in 
general that this discrete transformation will 
produce the discrete equivalent of a uniform 
probability density function, which would be a 
uniform histogram
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Example
before after Histogram 

equalization

70

Example
before after Histogram 

equalization

The quality is 
not improved 
much because 
the original 
image already 
has a broaden 
gray-level scale 
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Example

4242
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4x4 image 

Gray scale = [0,9]
histogram
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Example

8383

9636

6838

3663

Output image 

Gray scale = [0,9]
Histogram equalization
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Gray level
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Note
It is clearly seen that 

Histogram equalization distributes the gray level to 
reach the maximum gray level (white) because the 
cumulative distribution function equals 1 when 
0 ≤ r ≤ L-1
If the cumulative numbers of gray levels are slightly 
different, they will be mapped to little different or 
same gray levels as we may have to approximate the 
processed gray level of the output image to integer 
number 
Thus the discrete transformation function can’t 
guarantee the one to one mapping relationship
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Histogram Matching 
(Specification)

Histogram equalization has a disadvantage 
which is that it can generate only one type 
of output image.
With Histogram Specification, we can 
specify the shape of the histogram that 
we wish the output image to have.
It doesn’t have to be a uniform histogram

76

Consider the continuous domain

Let pr(r) denote continuous probability density 
function of gray-level of input image, r

Let pz(z) denote desired (specified) continuous 
probability density function of gray-level of 
output image, z

Let s be a random variable with the property

∫==
r

r dw)w(p)r(Ts
0

Where w is a dummy variable of integration

Histogram equalization
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Next, we define a random variable z with the property

s = T(r) = G(z)

We can map an input gray level r to output gray level z

thus

sdt)t(p)z(g
z

z == ∫
0

Where t is a dummy variable of integration

Histogram equalization

Therefore, z must satisfy the condition

z = G-1(s) = G-1[T(r)]

Assume G-1 exists and satisfies the condition (a) and (b)

78

Procedure Conclusion
1. Obtain the transformation function T(r) by 

calculating the histogram equalization of the 
input image

2. Obtain the transformation function G(z) by 
calculating histogram equalization of the 
desired density function 

∫==
r

r dw)w(p)r(Ts
0

sdt)t(p)z(G
z

z == ∫
0
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Procedure Conclusion
3. Obtain the inversed transformation 

function G-1

4. Obtain the output image by applying the 
processed gray-level from the inversed 
transformation function to all the 
pixels in the input image 

z = G-1(s) = G-1[T(r)]

80

Example
Assume an image has a gray level probability density 
function pr(r) as shown. 

0 1 2

1

2

Pr(r)



 ≤≤+−

=
elsewhere;           0  

1r;0   22r
)r(pr

1
0

=∫
r

r dw)w(p

r
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Example
We would like to apply the histogram  specification with 
the desired probability density function pz(z) as shown. 

0 1 2

1

2

Pz(z)

z
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
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=
elsewhere;         0  

 1z;0       2z
)z(pz

1
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z

z dw)w(p
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Step 1:

0 1

1

s=T(r)

r rr

ww

dw)w(

dw)w(p)r(Ts

r

r

r

r

2

2

22

2

0

2
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0

+−=

+−=

+−=

==

∫

∫

Obtain the transformation function T(r)

One to one 
mapping 
function 
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Step 2:

2

0
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            2 zzdw)w()z(G
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Obtain the transformation function G(z)

84

Step 3:

2

22

2

2

rrz

rrz
)r(T)z(G

−=

+−=

=

Obtain the inversed transformation function G-1

We can guarantee that 0 ≤ z ≤1 when 0 ≤ r ≤1 
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Discrete formulation
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Example

Image of Mars moon

Image is dominated by large, dark areas, 
resulting in a histogram characterized by 
a large concentration of pixels in pixels in 
the dark end of the gray scale
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Image Equalization

Result image 
after histogram 

equalization

Transformation  function  
for histogram equalization

Histogram of the result image

The histogram equalization doesn’t make the result image look better than 
the original image. Consider the histogram of the result image, the net 
effect of this method is to map a very narrow interval of dark pixels into 
the upper end of the gray scale of the output image. As a consequence, the 
output image is light and has a washed-out appearance.

88

Histogram Equalization

Histogram Specification

Solve the problem
Since the problem with the 
transformation function of the 
histogram equalization was 
caused by a large concentration 
of pixels in the original image 
with levels near 0

a reasonable approach is to 
modify the histogram of that 
image so that it does not have 
this property
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Histogram Specification
(1) the transformation 
function G(z) obtained 
from 

(2) the inverse 
transformation G-1(s)

1210                    
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Result image and its histogram

Original image

The output image’s histogram

Notice that the output 
histogram’s low end has 
shifted right toward the 
lighter region of the gray 
scale as desired.

After applied 
the histogram 
equalization
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Note
Histogram specification is a trial-and-
error process
There are no rules for specifying 
histograms, and one must resort to 
analysis on a case-by-case basis for any 
given enhancement task.

92

Note
Histogram processing methods are global 
processing, in the sense that pixels are 
modified by a transformation function 
based on the gray-level content of an 
entire image.
Sometimes, we may need to enhance 
details over small areas in an image, 
which is called a local enhancement.
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Local Enhancement

define a square or rectangular neighborhood and move the center 
of this area from pixel to pixel.
at each location, the histogram of the points in the neighborhood 
is computed and either histogram equalization or histogram 
specification transformation function is obtained.
another approach used to reduce computation is to utilize 
nonoverlapping regions, but it usually produces an undesirable 
checkerboard effect.

a) Original image 
(slightly blurred to 
reduce noise)

b) global histogram 
equalization (enhance 
noise & slightly 
increase contrast but 
the construction is 
not changed)

c) local histogram 
equalization using 
7x7 neighborhood 
(reveals the small 
squares inside larger 
ones of the original 
image. 

(a) (b) (c)

94

Explain the result in c)
Basically, the original image consists of many 
small squares inside the larger dark ones.
However, the small squares were too close in 
gray level to the larger ones, and their sizes 
were too small to influence global histogram 
equalization significantly.
So, when we use the local enhancement 
technique, it reveals the small areas.
Note also the finer noise texture is resulted 
by the local processing using relatively small 
neighborhoods.
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Enhancement using 
Arithmetic/Logic Operations

Arithmetic/Logic operations perform on 
pixel by pixel basis between two or more 
images
except NOT operation which perform 
only on a single image

96

Logic Operations
Logic operation performs on gray-level 
images, the pixel values are processed as 
binary numbers
light represents a binary 1, and dark 
represents a binary 0 
NOT operation = negative transformation
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Example of AND Operation

original image AND image 
mask 

result of AND 
operation

98

Example of OR Operation

original image OR image 
mask 

result of OR 
operation
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Image Subtraction

g(x,y) = f(x,y) g(x,y) = f(x,y) –– h(x,y)h(x,y)

enhancement of the differences between  
images

100

Image Subtraction
a). original fractal image
b). result of setting the four 
lower-order bit planes to zero

refer to the bit-plane slicing
the higher planes contribute 
significant detail
the lower planes contribute more 
to fine detail
image b). is nearly identical 
visually to image a), with a very 
slightly drop in overall contrast 
due to less variability of the 
gray-level values in the image.

c). difference between a). and b). 
(nearly black)
d). histogram equalization of c). 
(perform contrast stretching 
transformation)

dc
ba



Department of Computer Engineering, CMU

51

101

Mask mode radiography
h(x,y) is the mask, an X-ray 
image of a region of a 
patient’s body captured by an 
intensified TV camera 
(instead of traditional X-ray 
film) located opposite an X-
ray source
f(x,y) is an X-ray image taken 
after injection a contrast 
medium into the patient’s 
bloodstream
images are captured at TV 
rates, so the doctor can see 
how the medium propagates 
through the various arteries 
in the area being observed 
(the effect of subtraction) in 
a movie showing mode. 

mask image an image (taken after 
injection of a contrast 
medium (iodine) into the 
bloodstream) with mask 
subtracted out.Note: 

• the background is dark because it 
doesn’t change much in both images.
• the difference area is bright because it 
has a big change

102

Note
We may have to adjust the gray-scale of the subtracted 
image to be [0, 255] (if 8-bit is used)

first, find the minimum gray value of the subtracted 
image
second, find the maximum gray value of the subtracted 
image
set the minimum value to be zero and the maximum to be 
255
while the rest are adjusted according to the interval 
[0, 255], by timing each value with 255/max

Subtraction is also used in segmentation of moving pictures 
to track the changes

after subtract the sequenced images, what is left should 
be the moving elements in the image, plus noise
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Image Averaging
consider a noisy image g(x,y) formed by 
the addition of noise η(x,y) to an original 
image f(x,y)

g(x,y) = f(x,y) + η(x,y)

104

Image Averaging
if noise has zero mean and be 
uncorrelated then it can be shown that if 

),( yxg = image formed by averaging 
K different noisy images

∑
=

=
K

i
i yxg

K
yxg

1
),(1),(
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Image Averaging
then 

),(
2

),(
2 1

yxyxg
K

ησσ =

= variances of g and η),(
2

),(
2 , yxyxg ησσ

if K increase, it indicates that the variability (noise) of the 
pixel at each location (x,y) decreases. 

106

Image Averaging
thus

),()},({ yxfyxgE =

)},({ yxgE = expected value of g
(output after averaging)

= original image f(x,y)
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Image Averaging
Note: the images gi(x,y) (noisy images) 
must be registered (aligned) in order to 
avoid the introduction of blurring and 
other artifacts in the output image.

108

Example
a) original image
b) image corrupted by 
additive Gaussian noise 
with zero mean and a 
standard deviation of 64 
gray levels.
c). -f). results of 
averaging K = 8, 16, 64 
and 128 noisy images

fe
dc
ba
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Spatial Filtering

use filter (can also be called as 
mask/kernel/template or window)
the values in a filter subimage are 
referred to as coefficients, rather than 
pixel.
our focus will be on masks of odd sizes, 
e.g. 3x3, 5x5,…

110

Spatial Filtering Process
simply move the filter mask from point 
to point in an image.
at each point (x,y), the response of the 
filter at that point is calculated using a 
predefined relationship.
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Linear Filtering
Linear Filtering of an image f of size 
MxN filter mask of size mxn is given by 
the expression 

∑∑
−= −=

++=
a

at

b

bt
tysxftswyxg ),(),(),(

where a = (m-1)/2   and    b = (n-1)/2

To generate a complete filtered image this equation must 
be applied for x = 0, 1, 2, … , M-1 and y = 0, 1, 2, … , N-1

112

Smoothing Spatial Filters
used for blurring and for noise reduction
blurring is used in preprocessing steps, 
such as 

removal of small details from an image prior 
to object extraction
bridging of small gaps in lines or curves

noise reduction can be accomplished by 
blurring with a linear filter and also by a 
nonlinear filter
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Smoothing Linear Filters

output is simply the average of the pixels 
contained in the neighborhood of the filter 
mask.
called averaging filters or lowpass filters.

114

Smoothing Linear Filters
replacing the value of every pixel in an image 
by the average of the gray levels in the 
neighborhood will reduce the “sharp”
transitions in gray levels.
sharp transitions

random noise in the image
edges of objects in the image

thus, smoothing can reduce noises (desirable) 
and blur edges (undesirable)
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3x3 Smoothing Linear Filters

box filter weighted average

the center is the most important and other 
pixels are inversely weighted as a function of 
their distance from the center of the mask

116

Weighted average filter
the basic strategy behind weighting the 
center point the highest and then 
reducing the value of the coefficients as 
a function of increasing distance from 
the origin is simply an attempt to an attempt to 
reduce blurring in the smoothing reduce blurring in the smoothing 
processprocess.
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General form : smoothing mask
filter of size mxn (m and n odd)
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summation of all coefficient of the mask

118

Example
a). original image 500x500 pixel
b). - f). results of smoothing 
with square averaging filter 
masks of size n = 3, 5, 9, 15 and 
35, respectively.
Note:

big mask is used to eliminate small 
objects from an image.
the size of the mask establishes 
the relative size of the objects 
that will be blended with the 
background.

fe
dc
ba
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Example

original image result after smoothing 
with 15x15 averaging mask

result of thresholding

we can see that the result after smoothing and thresholding, 
the remains are the largest and brightest objects in the image.

120

Order-Statistics Filters 
(Nonlinear Filters)

the response is based on ordering 
(ranking) the pixels contained in the 
image area encompassed by the filter
example

median filter : R = median{zk |k = 1,2,…,n x n}
max filter : R = max{zk |k = 1,2,…,n x n}
min filter : R = min{zk |k = 1,2,…,n x n}

note: n x nis the size of the mask
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Median Filters
replaces the value of a pixel by the median of 
the gray levels in the neighborhood of that 
pixel (the original value of the pixel is included 
in the computation of the median)
quite popular because for certain types of 
random noise (impulse noise impulse noise salt and pepper salt and pepper 
noisenoise) , they provide excellent noiseprovide excellent noise--reduction reduction 
capabilitiescapabilities, with considering less blurring than less blurring than 
linear smoothing filters of similar size.linear smoothing filters of similar size.

122

Median Filters
forces the points with distinct gray levels to 
be more like their neighbors.
isolated clusters of pixels that are light or 
dark with respect to their neighbors, and 
whose area is less than n2/2 (one-half the 
filter area), are eliminated by an n x n median 
filter.
eliminated = forced to have the value equal the 
median intensity of the neighbors.
larger clusters are affected considerably less
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Example : Median Filters

124

Sharpening Spatial Filters
to highlight fine detail in an image 
or to enhance detail that has been 
blurred, either in error or as a natural 
effect of a particular method of image 
acquisition.
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Blurring vs. Sharpening
as we know that blurring can be done in 
spatial domain by pixel averaging in a 
neighbors 
since averaging is analogous to integration
thus, we can guess that the sharpening 
must be accomplished by spatial spatial 
differentiation.differentiation.

126

Derivative operator
the strength of the response of a derivative 
operator is proportional to the degree of 
discontinuity of the image at the point at 
which the operator is applied.
thus, image differentiation 

enhances edges and other discontinuities (noise)
deemphasizes area with slowly varying gray-level 
values.
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First-order derivative
a basic definition of the first-order 
derivative of a one-dimensional function 
f(x) is the difference

)()1( xfxf
x
f

−+=
∂
∂

128

Second-order derivative
similarly, we define the second-order 
derivative of a one-dimensional function 
f(x) is the difference
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2

xfxfxf
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f
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First and Second-order 
derivative of f(x,y)

when we consider an image function of 
two variables, f(x,y), at which time we 
will dealing with partial derivatives along 
the two spatial axes.
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Discrete Form of Laplacian
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Result Laplacian mask

132

Laplacian mask implemented an 
extension of diagonal neighbors
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Other implementation of 
Laplacian masks

give the same result, but we have to keep in mind that 
when combining (add / subtract) a Laplacian-filtered 
image with another image.

134

Effect of Laplacian Operator
as it is a derivative operator,

it highlights gray-level discontinuities in an 
image
it deemphasizes regions with slowly varying 
gray levels

tends to produce images that have 
grayish edge lines and other discontinuities, 
all superimposed on a dark, 
featureless background.
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Correct the effect of 
featureless background

easily by adding the original and Laplacian 
image.
be careful with the Laplacian filter used
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yxfyxf
yxfyxf

yxg

if the center coefficient 
of the Laplacian mask is 
negative

if the center coefficient 
of the Laplacian mask is 
positive

136

Example
a). image of the North 
pole of the moon
b). Laplacian-filtered 
image with 

c). Laplacian image scaled 
for display purposes
d). image enhanced by 
addition with original 
image 

111

1-81

111
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Mask of Laplacian + addition
to simply the computation, we can create 
a mask which do both operations, 
Laplacian Filter and Addition the original 
image.

138

Mask of Laplacian + addition
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Example

140

Note
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-15-1
0-10

000
010
000





∇+
∇−

=
),(),(
),(),(

),( 2

2

yxfyxf
yxfyxf

yxg

= +

0-10
-14-1
0-10

0-10
-19-1
0-10

000
010
000

= +

0-10
-18-1
0-10



Department of Computer Engineering, CMU

71

141

Unsharp masking

to subtract a blurred version of an image 
produces sharpening output image.

),(),(),( yxfyxfyxfs −=

sharpened image = original image – blurred imagesharpened image = original image – blurred image

142

High-boost filtering

generalized form of Unsharp masking
A ≥ 1
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High-boost filtering

if we use Laplacian filter to create 
sharpen image fs(x,y) with addition of 
original image
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High-boost filtering

yields
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if the center coefficient 
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of the Laplacian mask is 
positive
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High-boost Masks

A ≥ 1
if A = 1, it becomes “standard” Laplacian 
sharpening

146

Example
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Gradient Operator
first derivatives are implemented using 
the magnitude of the gradientmagnitude of the gradient.
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Gradient Mask
simplest approximation, 2x2
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Gradient Mask
Roberts cross-gradient operators, 2x2
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Gradient Mask
Sobel operators, 3x3
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the weight value 2 is to 
achieve smoothing by 
giving more important 
to the center point
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Note
the summation of coefficients in all 
masks equals 0, indicating that they 
would give a response of 0 in an area of 
constant gray level.

152

Example
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Example of Combining Spatial 
Enhancement Methods

want to sharpen the 
original image and 
bring out more 
skeletal detail.
problems: narrow 
dynamic range of 
gray level and high 
noise content makes 
the image difficult to 
enhance

154

Example of Combining Spatial 
Enhancement Methods
solve : 

1. Laplacian to highlight fine detail
2. gradient to enhance prominent 

edges
3. gray-level transformation to 

increase the dynamic range of 
gray levels
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