Chapter 3: Digital Image Processing Image Enhancement in the Spatial Domain

> Lecturer: Wanasanan Thongsongkrit Email : <u>wanasana@eng.cmu.ac.th</u> Office room : 410

- As the low-contrast image's histogram is narrow and centered toward the middle of the gray scale, if we distribute the histogram to a wider range the quality of the image will be improved.
- We can do it by adjusting the probability density function of the original histogram of the image so that the probability spread equally

35

Random Variables

- However, this is seldom done, and, in our experience, trying to be formal by using function notation complicates the issue more than the clarity it introduces.
- Thus, we will opt for the less formal notation, with the warning that it must be keep clearly in mind that random variables are functions.

43

Gray Level(j)	0	1	2	3	4	5	6	7	8	9
No. of pixels	0	0	6	5	4	1	0	0	0	0
$\sum_{j=0}^k \boldsymbol{n}_j$	0	0	6	11	15	16	16	16	16	16
$s = \sum_{j=0}^{k} \frac{n_j}{n}$	0	0	6 / 16	11 / 16	15 / 16	16 / 16	16 / 16	16 / 16	16 / 16	16 / 16
s x 9	0	0	3.3 ≈3	6.1 ≈6	8.4 ≈8	9	9	9	9	9

Histogram Matching (Specification)

- Histogram equalization has a disadvantage which is that it can generate only one type of output image.
- With Histogram Specification, we can specify the shape of the histogram that we wish the output image to have.
- It doesn't have to be a uniform histogram

Step 2:
Obtain the transformation function
$$G(z)$$

$$G(z) = \int_{0}^{z} (2w) dw = z^{2} \Big|_{0}^{z} = z^{2}$$

Discrete formulation

$$s_{k} = T(r_{k}) = \sum_{j=0}^{k} p_{r}(r_{j})$$

$$= \sum_{j=0}^{k} \frac{n_{j}}{n} \qquad k = 0, 1, 2, ..., L - 1$$

$$G(z_{k}) = \sum_{i=0}^{k} p_{z}(z_{i}) = s_{k} \qquad k = 0, 1, 2, ..., L - 1$$

$$z_{k} = G^{-1}[T(r_{k})]$$

$$= G^{-1}[s_{k}] \qquad k = 0, 1, 2, ..., L - 1$$

Mask mode radiography

101

Note	g(x,	$y) = \begin{cases} f(x) \\ f(x) \end{cases}$, y) – , y) +	$\nabla^2 f(x, y)$ $\nabla^2 f(x, y)$
0 -1 0 -1 5 -1 0 -1 0	=	0 0 0 0 1 0 0 0 0	+	0 -1 0 -1 4 -1 0 -1 0
0 -1 0 -1 9 -1 0 -1 0	=	$\begin{array}{c ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}$	+	0 -1 0 -1 8 -1 0 -1 0

Example of Combining Spatial Enhancement Methods

- want to sharpen the original image and bring out more skeletal detail.
- problems: narrow dynamic range of gray level and high noise content makes the image difficult to enhance

153

a b c d

FIGURE 3.46 (a) Image of whole body bone scan. (b) Laplacian of (a). (c) Sharpened image obtained by adding (a) and (b). (d) Sobel of (a).

155

